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Abstract
To compensate the mismatch between training and testing con-
ditions, an unsupervised hybrid compensation technique is pro-
posed. It combines Multi-Environment Model based LInear
Normalization (MEMLIN) with a novel acoustic model adap-
tation method based on rotation transformations. A set of rota-
tion transformations is estimated between clean and MEMLIN-
normalized data by linear regression in a training process. Thus,
each MEMLIN-normalized frame is decoded using the ex-
panded acoustic models, which are obtained from the reference
ones and the set of rotation transformations. During the search
algorithm, one of the rotation transformations is on-line selected
for each frame according to the ML criterion in a modified
Viterbi algorithm. Some experiments with Spanish SpeechDat
Car database were carried out. MEMLIN over standard ETSI
front-end parameters reaches 75.53% of mean improvement in
WER, while the introduced hybrid solution goes up to 90.54%.
Index Terms: robust speech recognition, feature vector nor-
malization, acoustic model adaptation.

1. Introduction
When training and testing acoustic conditions differ, the ac-
curacy of speech recognition systems rapidly degrades. To
compensate this mismatch, classic robustness techniques have
been developed along the following two main lines of research:
acoustic model adaptation methods, and feature vector normal-
ization methods. In general, acoustic model adaptation meth-
ods produce better results when the transcriptions are available
[1] because they can model the uncertainty caused by the noise
statistics. However, these methods usually require more data
and computing time than feature vector normalization methods
do, which do not produce as good results but provide more on-
line solutions. Hybrid techniques, which are the combination
of a feature vector normalization method and an acoustic model
adaptation method, also exist [2].

A previous work [3] shows that Multi-Environment Model-
based LInear Normalization, MEMLIN, (an empirical feature
vector normalization method based on stereo data and the
MMSE estimator) is effective to compensate the effects of dy-
namic and adverse car conditions, improving the performance
of techniques based on similar criterions, e.g. Stereo-based
Piecewise Linear Compensation for Environments, SPLICE,
[4]. However these techniques, which only use a bias vector
transformation to compensate the noisy feature vectors, do not
take into account all kinds of degradation.

On the other hand, classic acoustic model adaptation meth-
ods, e.g. Maximum Likelihood Linear Regression, MLLR,[5]
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take into account implicitly all kinds of degradations of the fea-
ture vectors by mapping the parameters of the reference acous-
tic models to the noisy space. However, the performance of
these techniques degrades when the transcription of the adapta-
tion data is not available (unsupervised methods) [6].

In this work we propose an on-line unsupervised hybrid so-
lution which combines MEMLIN with a novel acoustic model
adaptation method based on rotation transformations over an
expanded HMM-state space. Hence, clean and MEMLIN-
normalized spaces are modelled with GMMs and a set of rota-
tion matrices is obtained, estimating one matrix for each pair of
Gaussians (clean-normalized) with stereo normalized and clean
data in a previous unsupervised training process using linear
regression. In recognition, each MEMLIN-normalized feature
vector is decoded with the expanded acoustic models, which are
generated from the reference ones and the set of rotation matri-
ces; so that one of the rotation matrices is selected during the
search algorithm for each MEMLIN-normalized feature vector
by using the ML criterion. Thus, shift and rotation degradations
are compensated jointly in an unsupervised way.

This paper is organized as follows: In Section 2, the novel
proposed hybrid compensation technique is presented. In Sec-
tion 3, some considerations about MEMLIN are included. The
rotation matrix estimation process is explained in Section 4.
The on-line selection of the rotation matrix for each normalized
feature vector in the decoding process is presented in Section 5.
In Section 6, the results with Spanish SpeechDat Car database
[7] are included. Finally, the conclusions are presented in Sec-
tion 7.

2. Unsupervised Hybrid Compensation

Figure 1:Scheme of the proposed unsupervised hybrid compensation
technique.



The scheme of the proposed unsupervised hybrid compen-
sation technique is depicted in Figure 1. It is composed of
two phases: training and decoding. In the unsupervised train-
ing phase, the available clean and noisy training stereo data
are needed to estimate the MEMLIN transformations [3]. Fur-
thermore the noisy training feature vectors are normalized us-
ing MEMLIN (“Normalization MEMLIN”), and the clean and
MEMLIN-normalized spaces are modelled with GMMs. Also,
a set of rotation matrices is estimated by linear regression with
the normalized and clean stereo training data (“Matrix estima-
tion”), obtaining one rotation matrix for each pair of Gaussians
(clean-normalized). On the other hand, in the decoding phase,
each MEMLIN-normalized testing feature vector (“Normaliza-
tion MEMLIN”) is recognized with expanded acoustic models
(“Decoder Matrix selection”), which are obtained with the ref-
erence acoustic models and the set of rotation matrices. During
the search process, a rotation matrix per frame will be selected
implicity with the associated expanded state by using the ML
criterion in a modified Viterbi algorithm.

3. Feature Vector Normalization
MEMLIN is the selected feature vector normalization technique
for the hybrid compensation method in this work, although
other algorithms could be used. MEMLIN is an empirical fea-
ture vector normalization technique based on MMSE estimator.
It is based on three approximations [3]: the clean feature space
is modelled as a GMM; the noisy space is split into several ba-
sic acoustic environments and each one of them is modelled as
a GMM. The third assumption consists on defining a bias vector
transformation associated with each pair of Gaussians from the
clean and the noisy basic environment spaces.

It can be observed that the clean estimated feature vector
that MEMLIN provides for the time indext, x̂t, is a shifted
version of the noisy oneyt: x̂t = yt + gt, wheregt is the
corresponding bias vector which depends on the acoustic envi-
ronment and the noisy and clean GMM modelled spaces [3].
Usually x̂t is recognized with clean acoustic models. But it
provides the same solution that recognizing the noisy feature
vector,yt, with clean acoustic models, where all the mean vec-
tors, μ, are modified asμ − gt (assuming the acoustic mod-
els are composed by HMM with GMMs as observation genera-
tion probability density functions, pdfs, of the different states).
Thus, the feature vector normalization methods which consist
on linear transformations composed only by a bias vector (e. g.
Cepstral Mean Normalization (CMN), SPLICE, MEMLIN...)
can be seen also as acoustic model adaptation techniques which
transform the mean vectors each time index.

4. Rotation Matrix Estimation
Three approximations are considered

• Clean feature vectors,xt, are modelled using a GMM
p(xt) =

∑

sx

p(xt|sx)p(sx), (1)

p(xt|sx) = N (xt;μsx ,Σsx), (2)

whereμsx , Σsx , andp(sx) are the mean vector, the di-
agonal covariance matrix, and the a priori probability as-
sociated with the clean model Gaussiansx.

• Normalized feature vectors,̂xt, are modelled using a
GMM

p(x̂t) =
∑

sx̂

p(x̂t|sx̂)p(sx̂), (3)

p(x̂t|sx̂) = N (x̂t;μsx̂ ,Σsx̂), (4)

whereμsx̂ , Σsx̂ , andp(sx̂) are the mean vector, the di-
agonal covariance matrix, and the a priori probability as-
sociated with the normalized model Gaussiansx̂.

• Normalized feature vectors can be approximated as a lin-
ear function of the clean feature vectors which depends
on the clean and normalized model Gaussianssx andsx̂:
x̂t ≈ Asx,sx̂xt, whereAsx,sx̂ is the rotation matrix be-
tween the feature vectorŝxt andxt associated to the pair
of Gaussianssx andsx̂.

Let us define the set of rotation matrices

A = {Asx,sx̂}
#sx,#sx̂
sx=1,sx̂=1

= {An}
N
n=1, (5)

where there is only one indexn for each pair of Gaussians
sx, sx̂ andN denotes the pair of Gaussians number:N =
#sx×#sx̂. In order to estimate the rotation matrixAn, stereo
data is used in the previous training phase:(XTr, X̂Tr) =
{(xTr1 , x̂

Tr
1 ); ...; (x

Tr
t , x̂

Tr
t ); ...; (x

Tr
T , x̂

Tr
T )}, with t ∈ [1, T ],

whereX̂Tr is obtained applying the corresponding feature vec-
tor compensation technique (MEMLIN in this case) to the noisy
training dataYTr. Thus,An is estimated by minimizing the
defined mean weighted square error,ξn, (6) with respect toAn
(7), whereTra[•] is the trace,p(sx|xTrt ) is the a posteriori
probability of the clean model Gaussiansx, given the clean
training feature vectorxTrt , andp(sx̂|x̂Trt ) is the a posteriori
probability of the normalized model Gaussiansx̂, given the nor-
malized training feature vector̂xTrt . Both probabilities can be
estimated using (1) and (2), for the first case (8), and (3) and (4)
for the second one (9)

p(sx|x
Tr
t ) =

p(xTrt |sx)p(sx)∑
sx
p(xTrt |sx)p(sx)

, (8)

p(sx̂|x̂
Tr
t ) =

p(x̂Trt |sx̂)p(sx̂)∑
sx̂
p(x̂Trt |sx̂)p(sx̂)

. (9)

5. Rotation Matrix Selection in Decoding
In order to select the rotation matrix,At, associated to each
normalized testing feature vector,̂xt, from the set of esti-
mated rotation matrices,An, ML maximization criterion is ap-
plied in the decoding process. To do that, the acoustic mod-
els are modified in a similar way as described in [8], where
the set of linear transformations in this case are the matri-
cesAn previously estimated. Hence, each state of the clean
space HMM acoustic models, (q ∈ [1, Q]), is expanded into
N states(q, n) considering the linear approximation̂xt ≈
Asx,sx̂xt = Anxt. The goal of the state expansion is to re-
duce the mismatch between the clean space acoustic models
and the normalized feature vectors for each rotation transfor-
mation. Thus, each expanded state is specialized in one of the
rotation transformations previously estimated. Assuming that a
componentsq in the pdf mixture of the original stateq follows
a normal distribution:N (xt;μsq ,Σsq ), the corresponding ex-
panded state componentsq,n is assumed to follow the distribu-
tionN (x̂t;Anμsq ,AnΣsqA

T
n ). So, the pdf for the expanded

state(q, n), p(x̂t|q, n), is a GMM composed by the defined
expanded components where the a priori component weights
remain unaltered:p(sq,n) = p(sq).

p(x̂t|q, n) =
∑

sq

p(sq)N (x̂t;Anμsq ,AnΣsqA
T
n ). (10)



ξn =
1

T

∑

t

p(sx|x
Tr
t )p(sx̂|x̂

Tr
t ) ∙ Tra

[
(x̂Trt −Anx

Tr
t )(x̂

Tr
t −Anx

Tr
t )

T
]
. (6)

An = Asx,sx̂ = arg min
An

{ξn} =

[
∑

t

p(sx|x
Tr
t )p(sx̂|x̂

Tr
t )(x̂

Tr
t (x

Tr
t )

T )

]

∙

[
∑

t

p(sx|x
Tr
t )p(sx̂|x̂

Tr
t )(x

Tr
t (x

Tr
t )

T )

]−1

. (7)

Note that the proposed expanded acoustic models, from a
generative point of view, can be seen as a more flexible speech
production process in adverse environment conditions, since
they can generate sequences of rotated feature vectors more
suitable to the normalized space.

Once the clean acoustic models have been expanded, the
classic search algorithm (Viterbi) for decoding unlabeled se-
quences has to be modified. Given a normalized testing ut-
terance, the sequence of expanded states which maximizes the
likelihood determines implicity the rotation matrixAt for each
normalized feature vector. Thus, the search algorithm under
this framework can be performed by computing recursively the
score state variable,φq,n(t), for the state(q, n) and the time
indext

φq,n(t) = max
q′,n′
{φq′,n′(t− 1) ∙ πq′,n′,q,n ∙ p(x̂t|q, n)}, (11)

beingπq′,n′,q,n the transition probability from expanded state
(q′, n′) to (q, n), which is considered equiprobability for all
(q, n) in this work. It can be observed that the presented hybrid
solution can be seen as recognizing each MEMLIN-normalized
feature vector,̂xt = yt + gt, with the corresponding expanded
acoustic models, where the mean vectors and covariance matri-
ces are adapted asAtμ andAtΣATt . This solution provides
the same results that recognizing the noisy feature vector,yt,
with acoustic models where the mean vectors and covariance
matrices are:Atμ − gt andAtΣATt , respectively. Note that
this point of view is conceptually similar to MLLR, where shift
and rotation are included in acoustic models. However, the shift
and rotation transformations for the proposed hybrid technique,
which are selected for each feature vector, are estimated with a
different criterion than MLLR. Also, the unsupervised MLLR
version needs a previous step to provide an estimation of the
transcription of the adaptation data (usually a recognition pro-
cess). Thus, the performance of the unsupervised MLLR so-
lution can degrade dramatically when the adaptation data are
highly noise corrupted or the adaptation data tasks are complex
(e.g. large vocabulary, spontaneous speech...) so that the esti-
mation of the transcription would not be precise enough. These
problems do not affect to the proposed hybrid technique, which
does not precise the transcription of the adaptation data.

6. Empirical Results
To observe the performance of the proposed unsupervised hy-
brid compensation technique in a real, dynamic, and complex
environment, a set of experiments were carried out using the
Spanish SpeechDat Car database [7]. Seven basic environments
were defined: car stopped, motor running (E1), town traffic,
windows close and climatizer off (silent conditions) (E2), town
traffic and noisy conditions: windows open and/or climatizer
on (E3), low speed, rough road, and silent conditions (E4), low
speed, rough road, and noisy conditions (E5), high speed, good
road, and silent conditions (E6), and high speed, good road, and
noisy conditions (E7).

The clean signals are recorded with a CLose talK (CLK)
microphone (Shune SM-10A), and the noisy ones are recorded

by a Hands-Free (HF) microphone placed on the ceiling in front
of the driver (Peiker ME15/V520-1). The SNR range for CLK
signals goes from 20 to 30 dB, and for HF ones goes from 5 to
20 dB.

The recognition task is isolated and continuous digits
recognition. As feature set, the standard ETSI front-end fea-
tures plus the energy and the corresponding delta and delta delta
coefficients are used in all the experiments. Cepstral mean nor-
malization is applied to testing and training data in all cases. On
the other hand, in this work, MEMLIN and SPLICE with Envi-
ronmental Model selection (SPLICE EM) [4] are applied to the
12 MFCCs and energy, whereas the derivatives are computed
over the normalized static coefficients. The acoustic models
are composed of 16 state HMM for each digit, a 3 state begin-
end silence HMM and a 1 state inter-word silence HMM. In all
cases, each pdf state is composed by a mixture of three Gaus-
sians.

The Word Error Rate (WER) baseline results for each ba-
sic environment are presented in Table 1, where MWER is the
Mean WER computed proportionally to the number of utter-
ances in each basic environment. “Train” column refers to the
signals used to obtain the corresponding acoustic HMMs: CLK
if they are trained with all clean training utterances, and HF and
if they are trained with all noisy ones.† HF indicates that spe-
cific acoustic models are retrained for each basic environment.
All acoustic models are obtained with ML algorithm. “Test”
column indicates which signals are used for recognition: clean,
CLK, or noisy, HF.

Table 1 shows the effect of real car conditions, which in-
creases the WER in all of the basic environments, (Train CLK,
Test HF), concerning the rates for clean conditions, (Train CLK,
Test CLK). When acoustic models are retrained using all basic
environment signals and ML algorithm (Train HF), MWER de-
creases, 4.63%. Finally, the most competitive results (3.42%
MWER) are obtained when specific acoustic models are re-
trained for each basic environment with ML algorithm, (Train†
HF), despite the poor WER reached with E7 due to the reduced
amount of data for that condition. However, this option is not
possible in a real situation because the basic environment can
not be known for each testing utterance.

Figure 2 shows the mean improvement in WER (MIMP)
in% for SPLICE EM, MEMLIN and the proposed hybrid tech-
nique based on MEMLIN (MEMLIN A) when different number
of Gaussians per basic environment are considered for the fea-
ture vector normalization techniques (4, 8, 16, 32, 64 and 128).
In case of MEMLIN, clean feature space is modelled with the
same number of Gaussians than the basic environments. Also,
16 rotation matrices (N ) are estimated in all cases for MEMLIN
A (#sx = #sx̂ = 4). MIMP is computed with MWER as

MIMP =
100(MWER−MWERCLK−HF )

MWERCLK−CLK −MWERCLK−HF
,

(12)
whereMWERCLK−CLK is the mean WER obtained with
clean conditions (0.91 in this case), andMWERCLK−HF is



Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 0.95 2.32 0.70 0.25 0.57 0.32 0.00 0.91

CLK HF 3.05 13.29 15.52 27.32 31.36 35.5653.06 21.48

HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63

† HF HF 1.14 4.37 1.68 2.13 2.10 2.06 23.13 3.42

HF MLLR HF 1.33 4.55 2.52 3.63 7.34 5.24 26.19 5.28

CLK A HF MEMLIN 2.19 3.95 2.10 3.26 3.24 1.90 2.38 2.86

Table 1: WER baseline results, in%, from the different basic environments (E1,..., E7), where MWER is the Mean WER.
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Figure 2:Mean improvement in WER, MIMP, in% for different nor-
malization techniques: SPLICE with environmental model selection
(SPLICE EM), MEMLIN and the proposed hybrid technique based on
MEMLIN and acoustic model adaptation based on rotation transforma-
tions (MEMLIN A).

the baseline (21.48). So, A 100% MIMP would be achieved
when MWER equals the one obtained under clean conditions.

It can be verified in Figure 2 the important improvement
that the presented hybrid solution obtains when it is applied
over MEMLIN for any number of Gaussians per basic environ-
ment concerning SPLICE EM and MEMLIN. In fact, the per-
formance with 64 components per basic environment (90.54%
MIMP, 2.86% MWER) is significantly better than SPLICE
EM (74.08% MIMP, 6.25% MWER) and MEMLIN (75.53%
MIMP, 5.95% MWER); even if matched training condition
(81.93%MIMP, 4.63%MWER) or specific acoustic models for
each basic environment are considered (87.81% MIMP, 3.42%
MWER), the performance is slightly inferior with respect to the
proposed hybrid solution due to the noisy space is more het-
erogenous than the normalized one. The complete best WER
results obtained with the hybrid solution are also included in
Table 1 (Train CLK A, Test HF MEMLIN). Also the perfor-
mance of unsupervised MLLR, where the transcription of the
noisy data is assumed as the true one, is presented in Table 1
to complete the comparison (Train HF MLLR, Test HF). Note
that the obtained performance (MWER 5.28%, 78.77%MIMP)
is inferior than the match training condition results and the ones
obtained with the proposed hybrid technique.

7. Conclusions
In this paper we have presented an unsupervised on-line hybrid
compensation solution which combines Multi-Environment
Model based LInear Normalization (MEMLIN) with a novel
acoustic model adaptation technique based on rotation transfor-
mations which depend on GMMs. The purpose of the hybrid

solution is to compensate jointly the shift and rotation intro-
duced by the acoustic environment. Some results with Span-
ish SpeechDat Car database show the effective performance of
the proposed technique (90.54% of mean improvement with 64
Gaussians per basic environment) with respect to classic feature
vector normalization techniques: SPLICE EM (74.08%), and
MEMLIN (75.53%), or acoustic model adaptation techniques:
unsupervised MLLR (78.77%). Even match training condition,
which is a supervised solution, does not reach the performance
of the proposed technique (81.93%) due to the variability of the
noisy space, which is higher than the normalized space. As fu-
ture line we propose to use the hybrid solution with other feature
vector normalization techniques.
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